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Abstract. The mechanism of the formation of ionic and bonding defects and the interaction
between protons and heavy ions in hydrogen-bonded molecular systems is investigated and a new
model is constructed. This model considers two coupled sublattices corresponding to those of
protons and heavy ions in order to study the dynamic properties resulting from deformation and
local fluctuation of the heavy ion sublattice due to the protonic displacements. As compared with
other models, the model emphasizes, in particular, the collective effect of the motion and the mutual
correlation between the two sublattices. The equations of motion admit analytic soliton solutions
of different types corresponding to two different defects. The combined effect of the two defects
and the proton transfer in the system are described by means of these solutions, and the appropriate
conditions associated with actual physical processes. Finally, we discuss in detail the characteristics
of the proton transfer and the advantages of the model.

1. Introduction and presentation of physical background

It is well known that hydrogen-bonded chains consisting of a series of hydrogen bonds occur
in many condensed matters and living systems, such as, for example, ice, solid alcohol, carbon
hydrates and proteins. The understanding of proton transfer in hydrogen-bonded systems,
which exhibit a considerable electrical conductivity even though electron transfer through the
systems is hardly supported, is a long-standing problem. New ideas from nonlinear dynamics
and soliton motion have provided a possibility to find an answer to this issue [1, 2]. This
investigation becomes even more important in view of the close connection with the problem
of proton transfer across biological membranes, which is something that could explain some
fundamental properties of life [3–5].

In the case of studies of proton transfer processes in hydrogen-bonded systems, for example
in ice, water or proteins, it is usual to consider one-dimensional chains, so-called Bernal–Fowler
filaments [6, 7]. In the normal state of a chain each proton is linked to a heavy ion (or oxygen
atom in ice) by a covalent bond in one case, or a hydrogen bond in the other. Therefore, there
are two kinds of arrangements of hydrogen bonded states in these systems, namely the type
X–H · · ·X–H · · ·X–H · · ·X–H · · ·X–H and the type H–X· · ·H–X · · ·H–X · · ·H–X · · ·H–X.
Obviously the two states should have the same energy. In such a case it is accepted that
the potential energy of the proton should have the form of a double well with two minima
corresponding to the two equilibrium positions of a proton between two neighbouring heavy
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(a)

(b)

Figure 1. The double-well potential in the hydrogen-bonded system with H+ in one well (a) or the
other (b) of the potential.

ions (or oxygen atoms) as shown in figure 1. The barrier which separates them has a height
which is in general of the order of the oscillation energy in a covalent bond X–H and is
approximately 20 times larger than that in a hydrogen bond. In the usual case, the protons
in the hydrogen bonds are subject to harmonic vibration with small amplitudes about their
equilibrium positions.

When the protons in the system are perturbed by an externally applied field, light or energy
is released, for example by ATP hydrolysis in protein molecules. Then localized fluctuations
of the protons appear, and the states and positions of the protons change. The protons then
move and deviate from their equilibrium positions, for instance by a translation, a jump, a
shift or by migration in the interbonds and intrabonds. This phenomenon of proton transfer
along hydrogen-bonded chains is observed experimentally, the protonic conductivity along the
chain being about 103–104 times larger than that in the perpendicular direction. The motion
of the protons may result in the ionic and bonding (orientational or Bjerrum) defects which
correspond to the exchange and rotation of bonds, respectively [8–12]. Thus the transfer of
protons along the hydrogen-bonded chain is caused by the transport of the two types of defects
as shown in figures 2 and 3. It is possible that protons are transferred by jumps from one water
molecule to another along the hydrogen-bonded chain, and that a migration of hydroxonium
and hydroxyl ionic defects takes place in the intrabonds. However, when a proton approaches
a molecule occupying a boundary of the chain, it may form a covalent bond, for example in ice
with the oxygen atom of the molecule and then the original proton moves to a neighbouring
molecule. When this process is repeated we have a transfer of the proton along the chain. The
chain thus changes its state and the transfer of the proton is not possible in the same direction.
The latter can be achieved only if a re-orientation of OH groups takes place by the second
defect mechanism: the Bjerrum defect. The motion of an orientation defect contains simple
successive rotations of OH groups, starting at one end of the chain and ending at the other. As
a result of these rotations the creation of a pair of D and L defects moving to different ends
can take place in any internal part of the chain. A sequence of rotations of all of the molecules
in a filament returns the chain to its original state. It follows that the motion of another proton
can occur only after the passage of a Bjerrum defect. In figure 4 we show a potential model of
a positive bonding defect for such systems.
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(a)

(b)

Figure 2. The two ionic defects in the hydrogen-bonded system.

(a)

(b)

Figure 3. The two Bjerrum defects in the hydrogen-bonded system.

(a)

(b)

Figure 4. The model with double-well potential curves for the two types of defect.

The soliton model of proton transfer was first proposed by V Ya Antonchenke,
A S Davydov and A V Zolotaryuk (the ADZ model) [1]. Further investigations have given
solutions for a far greater range of velocities [2, 14]. The problem was further pursued in
a number of papers [15–27] in which a variety of theoretical extensions—involving also
Pnevmatikoset al’s [35] one-component protonic chain with a new two-parameter, double
periodic, on-site potential—have been achieved. The basic idea of the ADZ model is that
the coupling between the oxygen atoms and protons have only one mechanism to reduce the
height of the barrier which protons have to overcome to pass from one molecule to another.
This is included in this model by coupling the proton motion with an optical mode of the
heavy ionic sublattice. The nature of this sublattice depends on the systems we study. In this
model an ionic defect appears as a kink or solitary wave in the proton sublattice, propagating
together with a localized contraction of the relative distance between neighbouring oxygens.
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This excitation is referred to as a two-component solitary wave. In this model the proton
potential with the double-well ansatz plays an essential role in the description of the motion of
ion defects as topological solitary waves, the nonlinear interaction generated by the coupling
between the protons and oxygen atoms playing only a secondary role by reducing the height of
the barrier. Therefore, the properties of the solitons are mainly determined by the double-well
potential. Thus this model is only effective for explaining the transfer of ion defects. The
model’s equations are also very difficult to solve, so that no exact analytical solutions can be
given. Furthermore, if realistic values for the parameters of hydrogen-bonded systems are
considered, the continuum approximation fails due to the narrowing of the domains of validity
of the solutions with respect to the lattice spacing. This is the case in ice in which the H3O+ or
OH− ions become almost point defects. It is also very difficult to accept the one-component
model of [14, 15] because the influence of the heavy ionic sublattice on the protons in their
model was not considered in detail, and in our opinion, this is not very reasonable. Therefore,
the proton transfer in the hydrogen-bonded systems is still an open problem. A complete
theoretical description of the combined effect of the transfers of both types of defects has
not been given so far. Thus, it is very desirable to improve and develop previous models by
introducing new ideas and methods.

On the basis of a renewed analysis of the mechanism forming the two defects, we here
propose a new model to study the dynamic properties of proton transfer resulting from the
localized fluctuations of the protons and the deformation of the structure of the heavy ionic
sublattice due to the displacement of the protons. The model emphasizes, in particular, the
collective effects of the protons, and the correlation interaction between the two sublattices.
Our Hamiltonian not only considers the change of the relative positions of neighbouring heavy
ions arising from the motion of the proton, but also their interaction, including the dipole–
dipole interaction and the resonant interaction between neighbouring protons. Thus we get
some new results due to the difference of this model with previous models. An advantage of
this model is that it admits analytic soliton solutions in a continuum approximation. Utilizing
these solutions we can explain the motions of the two types of defects, and the proton transfer
in the hydrogen-bonded system. Our study could also be extended in other related directions,
but this will be the aim of future investigations.

The paper is organized as follows. In section 2 we construct the model and propose
the model Hamiltonian of the system. In section 3 we derive the equations of motion and give
the corresponding soliton solutions in a continuum approximation. In section 4 we investigate
the elementary properties of the solitons. The system potential is examined in section 5. Finally
section 6 discusses the results and the advantages of this model.

2. Construction of the model and the Hamiltonian of the system

In the model we consider that the hydrogen-bonded chain consists of two interacting sublattices
of harmonically coupled protons (of massm) and heavy ions (hydroxyl groups for ice, or
complex negative ions, of massM) as shown in figure 5. Each proton lies between a pair of
heavy ions, usually referred to as ‘oxygens’. The proton is connected by one covalent bond
and one hydrogen bond with the two neighbouring oxygens. Therefore the potential energy
of the proton in each hydrogen bond has the form of a double-well potential with the two
minima corresponding to the two equilibrium positions of the proton. Obviously the double-
well potential is motivated, physically, by the simultaneous electromagnetic interaction of the
two neighbouring oxygens with the proton. When the proton can cross over the central barrier
of the double-well potential from one well to the other, the relative positions of the proton and
the two neighbouring oxygens have changed, and the positions of the covalent and hydrogen
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bonds have also exchanged. Thus the ionic defects occur in the system as described in the usual
models. In such a case the position of the proton in the hydrogen bond is mainly determined
by the double-well potential. The proton displacement is controlled by the elastic interaction
involved in the model. The coupling interaction between the proton and the oxygens can
only play a complementary role, which reduces the height of the barrier the proton has to
overcome to pass from one well to another, and thereby facilitates the proton crossover in view
of the weaker coupling between the proton and the oxygens and the long distance between
them. However, when the proton approaches the neighbouring oxygen the coupling interaction
between the proton and oxygen will be greatly enhanced in the intrinsically nonlinear system.
Thus the relative position between the proton and the oxygen will also be greatly changed, i.e.
the migration of the proton as well as the deformation of the heavy ion sublattice by stretching
and compression are enhanced. This phenomenon may result in the change of the direction
of the covalent bond between the proton and the oxygen, i.e. the rotation of the bond. In fact,
as far as the covalent bond is concerned, the so-called rotation of the bond in chemistry is
simply carried out by the relative displacements of the proton and the oxygens with charges.
Thus the Bjerrum defect occurs due to the coupling interaction in this intrinsically nonlinear
system as shown in figure 6. Evidently the crossovers of the protons or the rotations of the
bonds are mainly determined by the coupling interaction between the protons and the oxygens.
Therefore the mechanism forming this defect is different from that of the above ionic defect,
although they are all produced due to the changes of the relative positions of the protons and
oxygens. For the protons in our model we assume an electromagnetic interaction between the
neighbouring protons, including the dipole–dipole interaction and resonant interaction, except
for the above double-well potential and the elastic interaction caused by the covalent interaction
and related actions. Thus, it is also natural to take into account the changes of the relative
positions of the neighbouring heavy ions resulting from this interaction. Assuming again, for
the heavy ionic sublattice, the harmonic model with acoustic vibrations of low frequency, the
Hamiltonian of the system can be written as

H = Hp +Hion +Hint (1)

where

Hp =
∑
n

(
1

2m
p2
n +

1

2
mω2

0R
2
n −

1

2
mω2

1RnRn+1 +U(Rn)

)
(2)

and

U(Rn) = U0

[
1−

(
Rn

R0

)2]2

(3)

Hion =
∑
n

(
1

2M
P 2
n +

1

2
β(un − un−1)

2

)
(4)

Hint =
∑
n

(
1

2
χ1m(un+1− un−1)R

2
n +mχ2(un+1− un)RnRn+1

)
(5)

where the proton displacements and momenta areRn andpn = mṘn respectively; the first
being the displacement of the hydrogen atom from the middle of the bond between thenth
and the (n + 1)th heavy ions or OH’s in the static case.R0 is the distance between the central
maximum and one of the minima of the double well.U0 is the height of the potential barrier.
Similarlyun andPn = Mu̇n are the displacement of the heavy ion from its equilibrium position
and its conjugate momentum respectively. Furthermoreχ1 = ∂ω2

0/∂un andχ2 = ∂ω2
1/∂un

are coupling constants between the protons and the heavy ion sublattice, which represent
the changes in the energy of vibration of the protons and of the coupling energy between
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(a)

(b)

Figure 5. The one-dimensional lattice model for a hydrogen-bonded quasi-diatomic chain.

Figure 6. Schematic models each with a Bjerrum defect in the hydrogen-bonded system.

neighbouring protons due to the unit extension of the heavy ion sublattice, respectively. The
quantityω0 is the frequency of harmonic vibrations of the protonic sublattice. The quantity
1
2mω

2
1RnRn+1 shows the correlation interaction between neighbouring protons caused by the

dipole–dipole interactions.ω0 andω1 are diagonal and non-diagonal elements of the dynamical
matrix of the proton respectively. The quantityβ is the linear elastic constant of the heavy ionic
sublattice.mandM are the masses of the proton and heavy ion respectively.C0 = u0(β/M)

1/2

is the velocity of sound in the heavy ionic sublattice, andu0 is the lattice constant. The part
Hp of H is the Hamiltonian of the protonic sublattice with an on-site double-well potential
U(R),Hion being the Hamiltonian of the heavy ionic sublattice with low-frequency harmonic
vibration andHint is the interaction Hamiltonian between the protonic and the heavy ionic
sublattices.

From the above Hamiltonian, equations (1)–(5), we see that the new model is still a
coupled model of two oscillators (proton and heavy ion) which is similar with the ADZ model
[1, 2]. However, the former is significantly different from the latter for the following reasons.
(i) So far as state and motion of the heavy ion in our model is concerned, it is only a harmonic
oscillator with low-frequency acoustic-vibration, due to large mass containing a great number
of atoms or atomic groups. However, the heavy ion has both acoustic and optical vibrations
in the ADZ model, the physical idea, which is rather vague, we think is because the optical
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and acoustic vibrations are two different forms of vibration in nature. Therefore, we think
that our model for the heavy ion is more appropriate than the ADZ model. (ii) As far as state
and motion of the proton lying in the double-well potential is concerned, we here adopted
a model of a harmonic oscillator with optical vibration that includes a non-diagonal factor,
which comes from the interaction between neighbouring protons, and interaction with the
heavy ions; namely its vibrational frequencies are related to displacements of the heavy ions,
which shows the coupled interaction between the protonic and heavy ionic sublattices, thus
we can approximately obtain

ω2
0(un) ≈ ω2

0 +
∂ω2

0

∂un
(un − un−1) = ω2

0 + χ1(un − un−1)

ω2
1(un) ≈ ω2

1 +
∂ω2

1

∂un
(un − un−1) = ω2

1 + χ2(un − un−1).

By inserting the above formulae into the protonic Hamiltonian and again taking into account
the neighbouring heavy ions in left- and right-hand sides of the proton we naturally get to
(2) and (5). Therefore our Hamiltonian has high symmetry and a one-to-one corresponding
relation. However the ADZ’s Hamiltonian does not. As a matter of fact, the vibration of
the proton is acoustic, which is contrary to the heavy ion in the ADZ model. This is not
reasonable for the protonic model, we think, because the vibration frequency of the proton is
very high relative to the heavy ion due to its small mass and the strong interaction accepted.
Therefore our model of the proton is more appropriate than that of the ADZ model. Moreover,
the relation between the protonic and interactional Hamiltonians in the ADZ model does not
have a one-to-one correspondence, as mentioned above in our model. Moreover the physical
meaning of the interaction Hamiltonian is also very vague or difficult to understand in the
ADZ model. Thus the ADZ model cannot give a strictly analytic solution at all, so we do not
know what are the real properties and the law of the proton transfer in the systems in the ADZ
model!

As far as our model Hamiltonian is concerned, not only is the physical idea very clear and
easily understandable, but it also has high symmetry and one-to-one correspondence between
Hp andHint . It completely and exactly represents the dynamic features and states of the proton
and heavy ion and the interactions between them occurring in the systems when compared with
the ADZ model and other models [1, 2, 13–19, 23–28]. In fact, the above Hamiltonian in our
model not only includes the optical vibration of the protons, but also the resonant interaction
caused by the electromagnetic interactions between neighbouring protons, and it also takes into
account both the change of the relative displacement of the neighbouring heavy ions resulting
from the vibration of the proton and the correlation interaction between the neighbouring
protons. These facts clearly show that our model is new and expresses the properties of the
systems. Therefore, our model is more appropriate than the ADZ model. Thus we can expect
that our model can reveal some new results when compared with the ADZ model or other
models.

3. The equations of motion and their soliton solutions

With Hamilton’s equations (cf [38–43]) we obtain from (1)–(5)

ṗn = − ∂H
∂Rn
= −mω2

0Rn +
1

2
mω2

1(Rn+1 +Rn−1) + 4U0
1

R2
0

[
1−

(
Rn

R0

)2]
Rn

−mχ1(un+1− un−1)Rn −mχ2[(un+1− un)Rn+1− (un − un−1)Rn−1] (6)
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Ṗn = − ∂H
∂un
= β(un+1 + un−1− 2un) +

1

2
mχ2(R

2
n+1− R2

n−1) +mχ2(RnRn+1− RnRn−1). (7)

In the continuum approximation with the long-wavelength limit we have

nu0→ x
∑
n

→ 1

u0

∫
dx

with

Rn±1 = Rn ± u0
∂Rn

∂x
+

1

2
u2

0
∂2Rn

∂x2
+ · · · Rn(t)→ R(x, t)

and

un±1 = un ± u0
∂un

∂x
+

1

2
u2

0
∂2un

∂x2
+ · · · un(t)→ u(x, t)

and obtain

∂2

∂t2
R(x, t) = 1

2
ω2

1u
2
0
∂2

∂x2
R(x, t) + (ω2

1 − ω2
0)R(x, t) +

4

m
U0R

−2
0

[
1−

(
R(x, t)

R0

)2]
R(x, t)

−2(χ1 + χ2)u0
∂u(x, t)

∂x
R(x, t) (8)

and

∂2

∂t2
u(x, t) = C2

0
∂2

∂x2
u(x, t) + (χ1 + χ2)mu0

1

M

∂

∂x
R2(x, t). (9)

We now setρ = x − vt and obtain from (9)

∂

∂x
u(x, t) = −mu0(χ1 + χ2)

MC2
0(1− s2)

R2(x, t) + g (10)

whereg is an, as yet, undetermined integration constant ands = v/C0. Substituting (10) into
(8) we obtain

∂2

∂t2
R(x, t)− v2

1
∂2

∂x2
R(x, t)− [ω2

1 − ω2
0 + 2gu0(χ1 + χ2)]R(x, t)

− 4U0

mR4
0

[R2
0 − R2(x, t)]R(x, t)− 2(χ1 + χ2)

2mu2
0

MC2
0(1− s2)

R3(x, t) = 0 (11)

wherev2
1 = 1

2ω
2
1u

2
0. We see from (11) that the interaction between protons and heavy ions

indeed results in the decrease of the height of the barrier of the double-well potential. This
helps the transfer of protons across the barrier in hydrogen-bonded systems. If we further set

ε = ω2
1 − ω2

0 +
4U0

mR2
0

− 2g(χ1 + χ2)u0 G = 4U0

mR4
0

− 2(χ1 + χ2)
2mu2

0

MC2
0(1− s2)

(11) becomes

Rtt (x, t)− v2
1Rxx(x, t)− εR(x, t) +GR2(x, t)R(x, t) = 0. (12)

Equation (12) is a standardφ4 equation [43]. We assume a solution of the form

R(x, t) = F(ρ) ρ = x − vt (13)

wherek, ω andv are constants. Inserting (13) into (12) we get

(v2 − v2
1)

(
dF

dρ

)2

− εF 2 +
1

2
GF 4 = g′. (14)

Here we choose the integration constantg′ = −ε2/2G.



Proton transfer in hydrogen-bonded systems 893

We now consider in detail the solutions of (14).
(1) Whenε > 0,G > 0

4

mR4
0

(
U0 − (χ1 + χ2)

2m2u2
0R

4
0

2MC2
0(1− s2)

)
> 0

ω2
1 − ω2

0 +
4U0

mR2
0

− 2g(χ1 + χ2)u0 > 0 (15)

and

0< v < v1 0< v < C0. (16)

These conditions imply that in the case of the protons the double-well potential dominates
over the coupling interaction, i.e. the properties of the protons are mainly determined by the
double-well potential in such a case. The soliton solution then has the form

F(ρ) = ±
(
ε

G

)1/2

tanh

[(
ε

2(v2
1 − v2)

)1/2

ρ

]
(17)

or

R(x, t) = ±
(
ε

G

)1/2

tanh

[(
ε

2(v2
1 − v2)

)1/2

(x − vt)
]
. (18)

This is a topological kink soliton. From (10) and (18) we obtain (writingux(x, t) = ∂u/∂x
and similarlyut (x, t) later)

ux(x, t) = (χ1 + χ2)mu0ε

MC2
0(1− s2)G

cosh−2

[(
ε

2(v2
1 − v2)

)1/2

(x − vt)
]

(19)

and

u(x, t) = ∓
√

2(χ1 + χ2)mu0

MC2
0(1− s2)G

[ε(v2
1 − v2)]1/2 tanh

[(
ε

2(v2
1 − v2)

)1/2

(x − vt)
]
. (20)

Here we choose

g = R2
0mu0(χ1 + χ2)

MC2
0(1− s2)

.

Obviously the expression (20) is also a kink solution.
(2) When 0< v < C0, 0< v1 < v andε < 0,G < 0 we have

ω2
0 − ω2

1 + 2g(χ1 + χ2)u0 − 4U0

mR2
0

> 0 (21)

and
4

mR4
0

(
m2u2

0(χ1 + χ2)
2R4

0

2MC2
0(1− s2)

− U0

)
> 0. (22)

These conditions imply that the coupling of protons and heavy ions is more important than the
double-well potential, i.e. the properties of the protons are predominantly determined by the
coupling interaction. The solutions of (12) still have the form of (18)–(20).

(3) If 0 < C0 < v, we have

G = − 4

mR4
0

(
m2u2

0R
4
0(χ1 + χ2)

2

2MC2
0(s

2 − 1)
+U0

)
< 0. (23)

Then the solution retains the soliton form of (18)–(20) if 0< v1 < 0 andε < 0, i.e.

ω2
0 − ω2

1 + 2g(χ1 + χ2)u0 − 4U0

mR2
0

> 0. (24)
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The schematic form of the soliton solutions of (18)–(20) forR(x, t) > 0 are shown in figure 7.
(4) If ε < 0,G < 0, i.e.

ω2
0 − ω2

1 −
4U0

mR2
0

> 0
4

mR4
0

(
(χ1 + χ2)

2m2u2
0R

4
0

2MC2
0(1− s2)

− U0

)
> 0 (25)

and

0< v < C0 0< v < v1 (26)

the soliton solution of (12) is of the form

F(ρ) = ±
[

2|ε|
|G|

]1/2

cosh−1

[( |ε|
v2

1 − v2

)1/2

ρ

]
so that

R(x, t) = ±
[

2|ε|
|G|

]1/2

cosh−1

[( |ε|
v2

1 − v2

)1/2

(x − vt)
]
. (27)

This expression represents a non-topological soliton or bounce. From (10) and (27) we obtain

ux = −2mu0(χ1 + χ2)|ε|
MC2

0(1− s2)|G| cosh−2

[( |ε|
v2

1 − v2

)1/2

(x − vt)
]

and

u(x, t) = ∓2(χ1 + χ2)mu0[|ε|(v2
1 − v2)]1/2

MC2
0(1− s2)|G| tanh

[( |ε|
v2

1 − v2

)1/2

(x − vt)
]
. (28)

The latter is again a topological kink solution. It may be noticed that we choose the integration
constantg to be zero in accordance with the boundary conditions ofR(x, t) and u(x, t).
Therefore the difference between the two types of solutions results here from the boundary
conditions.

(5) However, if we let

0< v < C0 0< v1 < v (29)

andε > 0,G > 0, we have

ω2
1 − ω2

0 +
4U0

mR2
0

> 0

4

mR4
0

(
U0 − (χ1 + χ2)m

2u2
0R

4
0

2MC2
0(1− s2)

)
> 0 (30)

the solutions of (12) still have the form of (27) and (28).
(6) If we let 0< C0 < v, then

G = − 4

mR4
0

(
m2u2

0R
4
0(χ1 + χ2)

2

2MC2
0(1− s2)

+U0

)
< 0. (31)

Thus only if 0< v < v1, ε < 0 the solutions of (12) can have the form of those of (27) and
(28).

4. Elementary properties of proton solitons

We now investigate the elementary properties of the above proton solitons, but here we
consider only a few physically important quantities concerning the kink and antikink solitons
in (18)–(20).
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Figure 7. Schematic form of the solitons of (18)–(20).

4.1. Energy and mass of the soliton

When one soliton of either type is present in the chain the continuum expression of the energy
corresponding to (12) becomes (Rx andRt , again being partial derivatives)

E =
∫ ∞
−∞

H dx = 1

u0

∫ ∞
−∞

m

(
1

2
R2
t +

1

2
v2

1R
2
x −

1

2
εR2 +

G

4
R4

)
dx. (32)

Here the first term is the kinetic energy, the second term contains the (elastic) linear interaction
and the remaining part is the potential of the model. Thus the energy of the soliton of (18) is

E = mε

2G

{
− ε

[
1− 1

u0

(
2(v2

1 − v2)

ε

)1/2]
+ ε

[
1

2
− 2

3u0

(
ε

2(v2
1 − v2)

)−1/2]
+

2

3u0

(
ε

2(v2
1 − v2)

)1/2

(v2 + v2
1)

}
. (33)

This energy of the soliton is related to the velocity of the soliton. Its dependence on
the velocity in the case of ice is shown in figure 8. In this diagram we choose the following
acceptable values of the parameters of the model (cf [1–37]):R0 = 1 Å, U0 = 10 eV,
M = 100mp, m = mp, v1 = 103 m s−1, C0 = 104 m s−1, u0 = 5 Å, χ1 = 3× 1047 m s−2,
χ2 = 0.2× 1044 m s−2. Very obviously the energy increases with an increase in the velocity
of the soliton. In figure 9 we plot the energy of the soliton against the sum of the coupling
coefficientsχ1 + χ2. It is seen that when this quantity increases, the energy of the soliton also
increases. When the velocity of the soliton is very small, its energy of can be written

Esol = E0 + 1
2Msolv

2 (34)

where

E0 = mε

2G

{
− ε

[
1− 1

u0

(
2v1

ε

)1/2]
+ ε

[
1

2
− 2

3u0

(
2v1

ε

)−1/2]
+

2v1

3u0

(
ε

2

)1/2}
(35)

is the rest energy of the soliton in this case. The relationship between the energy and the
velocity is similar to that in the classical theory, where the mass of the soliton is taken to be

Msol = m(ε)3/2

u0

{√
2v1

[
4U0

mR4
0

− 2(χ1 + χ2)
2mu2

0

MC2
0

]}−1

= constant. (36)

The soliton mass is also seen to increase with increasing coupling strength.
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Figure 8. The dependence of the energy of the soliton on the soliton velocity.

Figure 9. The dependence of the energy of the soliton on the coupling constantsχ1 + χ2.

4.2. The momentum of the soliton

One can obtain the momentumP of the soliton from

P = −m
u0

∫
RxRt dx.

Inserting (18) we obtainP = m∗v where

m∗ = 2
√

2m

3u0(v
2
1 − v2)1/2

(
4U0

mR4
0

− 2(χ1 + χ2)
2u2

0m

MC2
0(1− s2)

)−1

ε3/2 (37)

andm∗ is the effective mass of the soliton. Evidently the momentum of the effective mass of
the soliton increases with increasing soliton velocity.

4.3. Amplitude and width of the soliton

The amplitude of the soliton of (18) is

Rm =
[
2

(
ω2

1 − ω2
0 +

4U0

mR2
0

− 2g(χ1 + χ2)u0

)(
4U0

mR4
0

− 2(χ1 + χ2)
2mu2

0

MC2
0(1− s2)

)−1]1/2

.

ObviouslyRm increases with increasing soliton velocity, but its dependence on the coupling
constantsχ1 +χ2 is weak. However, since the height of the barrier of the double-well potential
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decreases with an increase in the coupling constants, in this case the soliton can more easily
cross the barrier for proton transfer. The width of the soliton is

Wk = πu0

(
v2

1 − v2

ω2
1 − ω2

0 + (4U0/mR
2
0)− 2gu0(χ1 + χ2)

)1/2

. (38)

We see that the width of the soliton decreases as the coupling decreases and the soliton velocity
v increases. However, the soliton width is regulated by the relative magnitude of the height of
the barrier and that of the coupling constants.

4.4. The kink–antikink soliton pairs

We see from (18)–(20) that if the nonlinear autolocalized excitation in the protonic sublattice
is a kink (or antikink) there is also an antikink (or kink) soliton in the heavy ionic sublattice,
which is a ‘shadow’ of the kink (or antikink). They propagate along the hydrogen-bonded
chains in pairs with the same velocity, as shown in figure 10. In this figure the curve 1(3)
corresponds to the kink soliton in the protonic sublattice and curve 2(4) corresponds to the
antikink soliton in the heavy ionic sublattice. The motion of the kink soliton pair results in
some special physical and biological phenomena, which will be discussed in a separate paper.
From (18)–(20) and the appropriate boundary conditions we find the momentum of the kink
pair to be

P = − 1

u0

∫
(mRxRt +Muxut ) dx = Pk + Pak = M∗solv (39)

wherePk is the momentum of the protonic kink soliton of (18), and

Pak = M

u0

∫
uxut dx = M∗v

is the momentum of the antikink. HereM∗sol = m∗ +M∗ with

M∗ ≈ 2
√

2MQ2h3/2

3u0b

where

h =
(
U0

R4
0

− 2(χ1 + χ2)
2u2

0m
2

MC2
0(1− s2)

)
[m(v2

1 − v2)]−1

and

b = G

v2
1 − v2

Q = (χ1 + χ2)mu0

MC2
0(1− s2)

m∗ ≈ 2
√

2mh3/2

3u0b

wherem∗ andM∗ are the effective masses of the kink soliton and the antikink soliton
respectively.

5. The potential of the system

It can be observed that (12) can be derived from the following effective Hamiltonian

H =
∫
m

(
1

2
R2
t +

1

2
R2
x +U(R)

)
dx (40)

where the effective potentialU(R) is in such a case defined as

U(R) = − 1
2mεR

2 − 1
4GmR

4 +U0. (41)
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Figure 10. Kink–antikink soliton pairs in the hydrogen-bonded system.

The first term of (40) denotes the kinetic energy, the second term holds for the linear interaction
and the third term is the potential with theR4 type of interaction. On looking for solutions
with a constant profile and moving at constant phase velocityv, which is a function of the
variableρ = x − vt , the Hamiltonian formulation yields the first integral of the motion, i.e.

1
2(v

2 − 1)(R2
ρ) = U − U0 (42)

whereU0 is a constant of integration, i.e. the height of the barrier of the double-well potential.
Equation (41) plays an important part in the existence and stability of the localized soliton
solutions described above. The shape of the potential, equation (41), of course depends on the
magnitudes ofG andε. Therefore the following several situations can be distinguished.

5.1. The caseε > 0 andG > 0

This case implies that the double-well potential plays a main role for determining the properties
of the protons, but the coupling interaction is only of secondary importance. This means that
the double-well potential of (3) can make the protons become the kink solitons to cross over
the barriers. Thus it also determines the properties of the soliton. The coupling interaction
plays the role of reducing the height of the barrier, i.e. it contributes only a minor influence
on the properties of the soliton. This point can be easily understood. In such a situation the
potential has two degenerate minima with

Umin = −
(
ε2m

4G

)
+U0 = −m

4

[(
ω2

1 − ω2
0 +

4U0

mR4
0

− 2g(χ1 + χ2)u0

)2

×
(

4U0

mR4
0

− 2(χ1 + χ2)
2mu2

0

MC2
0(1− s2)

)−1]
+U0 (43)

at

R̄0 = Rmin = ±
(
ε

G

)1/2

= ±
{(
ω2

1 − ω2
0 +

4U0

mR2
0

− 2g(χ1 + χ2)u0

)
×
(

4U0

mR4
0

− 2(χ1 + χ2)
2mu2

0

MC2
0(1− s2)

)−1}1/2

. (44)
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Figure 11. The potential energyU(R) againstR for different values ofε andG. Here we choose
m = 1, ε > 0 andG > 0. For curve (a)ε > 0 andG < 0 or ε < 0 andG > 0; curve (b)ε = ε0
andG = G0; curve (c)ε = 2ε0 andG = 1.5G0 and curve (d)ε = 3ε0 andG = 1.5G0. Here
G0 > 0, ε0 > 0 and letε0/G0 = 1.

Figure 12. The potential energy of the system:U(R) againstR for different values of the coupling
constants andε > 0 andG > 0. Here we choosem = 1. For curve (a)χ1 + χ2 = 0, curve
(b) χ1 + χ2 = 2 and curve (c)χ1 + χ2 = 4.

Therefore the energy,̄Umin, and the kink’s position,̄R0, and the height of the barrier,̄U ∗0 ,
depend directly on the magnitudes ofG/ε, or, put differently, on(χ1 + χ2), ω0, ω1, v andU0.
Whenχ1 = χ2 = 0 andω1 = ω0 = 0, we haveUmin = 0 andR = R0. This is just the
case of the original double-well potential. However, ifχ1 6= 0, χ2 6= 0, ω0 6= 0 andω1 6= 0
the situation becomes very complicated. In figure 11 we plotU(R) againstR for different
values ofG andε. Obviously the potential energy behaves quite differently in the cases of
ε/G > 1.5, ε/G < 1.5 andε/G = 1. The heights of the barriers,̄U ∗0 , and the positions of
the minima of the potential wells,̄R0, increase with the increase ofε and the decrease ofG.
The dependence ofU(R) onR in the case of different coupling constants(χ1 + χ2) is shown
in figure 12. We see from this figure that with an increase of the coupling constants the height
of the barrier decreases and the positions of the minima of the potential wells are lengthened
relative to the heavy ions. This means that for protons the possibility of transitions over the
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Figure 13. The dependence of the relative change of the height of the potential barrier on the
change of the coupling constants forε > 0 andG > 0.

barrier is enhanced with an increase of the coupling constants. A decrease in the height of the
barrier,Ū ∗0 , and the reduction of the equilibrium position,R̄0, are approximately given by

1U0 = U0 − U0[1− (2z− z2)(y + 1) + y] = U0[(2z− z2)(y + 1)− y] > 0 (45)

with

1R̄0 = R0 − R0

(
1− z

2

) (
1 +

y

2

)
= R0

[ z
2

(
1 +

y

2

)
− y

2

]
> 0 (46)

where

0< z = ω2
0 − ω2

1 + 2g(χ1 + χ2)u0

(4U0/mR
2
0)

0< y = 2(χ1 + χ2)m
2u2

0R
4
0

4U0MC
2
0(1− s2)

and

g = R2
0mu0(χ1 + χ2)

MC2
0(1− s2)

z > y.

Equations (45) and (46) clearly show that1U0 and1R̄0 increase with an increase in the
coupling constants(χ1 + χ2). In figure 13 we plot1U0 against(χ1 + χ2). At the same time,
in this case, the values of the minima of the potential also become negative atR̄0 < R, from
zero atR = R0. The larger(χ1 + χ2), the smallerR̄0, the lower the height of the barrier and
the more negative the values of the minima of the potential energy. Thus the possibility of the
protons jumping over the barriers is greatly enhanced. This clearly shows that the case ofε > 0
andG > 0 describes the motion of the proton over the barrier of the double-well potential in
intrabonds. Thus, the ionic defects occur in such a case in the hydrogen-bonded systems.

Also, above the minima of the potential energy,Umin, its positionR̄0 decreases also
with increasing of velocity of the proton. This shows that when the velocity of the protons
is increased the protons will be far from the heavy ions. This conclusion has important
consequences.

5.2. The case ofε < 0 andG < 0

Contrary to the above situation, this means that the coupling interaction between the protons
and the heavy ions plays the main and elementary role for determining the properties of the
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Figure 14. The dependence of the potential energy of the system onR for ε < 0 andG < 0 for
different values ofε′ andG′. Here the origin of coordinates are atR = υ0/2 and the cases shown
have: curve (a)ε > 0 andG < 0 or ε < 0 andG > 0; curve (b)G′ > g′0 andε′ < ε′0; curve
(c) G′ = G′0 andε′ = ε′0; curve (d)G′ < G′0 andε′ > ε′0. HereG′0 > 0, ε′0 > 0, ε′ = −ε,
G′ = −G, let ε′0/G

′
0 = 1 andm = 1.

protons. In such a case, the coupling interaction makes the protons become the solitons to
shift over the barriers in the interbonds, the double-well potential playing only a minor role.
However, the potential of the system is still twofold degenerate and its minima or perturbation
theory vacuum energies are

U ′min =
m

4

|ε|2
|G| − U0 = m

4
|R̄′0|2|ε| − U0 < 0 (47)

i.e. it is negative, with the positions

R̄′0 = ±
( |ε|
|G|

)1/2

= ±
(
ε′

G′

)1/2

ε′ = −ε,G′ = −G. (48)

In figure 14 we plotU(R) againstR for different values ofG andε. From this plot, (47)
and (48) we see that whenε is small andG is large,R̄′0 is large andUmin is small andvice
versa. ObviouslyU ′min andR̄′0 also depend on the coupling constants(χ1 + χ2). In figure 15
we plotR̄′0/R0 against the change of(χ1 +χ2). The relations between these are approximately
given by

R̄′0 = ±R0(1− 1
2z
′)(1 + 1

2y
′)

z′ = ω2
1 − ω2

0 + (4U0/mR
2
0)

2g(χ1 + χ2)
< 1

1

y ′
= y < 1 (49)

and

U ′min =
mR4

0

4

(
2(χ1 + χ2)mu

2
0

MC2
0(1− s2)

)
(1− z′)2(1 +y ′)− U0 0< z′, 0< y ′, y ′ > z′. (50)

We clearly see from figure 15 and (49) that when(χ1+χ2) increases then̄R′0 increases. This
shows that strong coupling makes the protons approach the heavy ions, so that their separation
changes considerably. Conversely,R̄′0 decreases when(χ1 + χ2) decreases. This means that
with increasing separation of the protons from the heavy ions, the coupling interaction between
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Figure 15. The relative values of equilibrium positions̄R′0/R0 against the change of the coupling
constants1(χ1 + χ2) for ε < 0 andG < 0.

them also decreases. This is reasonable. Because there are two new equilibrium positions in
such a case, the proton can shift to another side of a heavy ion owing to the way the velocity
of the proton effects the potential energy of the system. Thus the rotation of the bonds, or
Bjerrum defect, occurs in such a case in the system. Also, above the minima of the potential
energy,Umin and R̄′0 increase with the velocity of the proton transfer andvice versa. This
shows that the equilibrium positions are reduced relative to the heavy ions, when the protons
approach the heavy ions at a high velocity; andvice versa, when the velocity of the proton
decrease the protons will be far away from the ions, which is an important point.

5.3. The caseG > 0 andε < 0 orG < 0 andε > 0

In such a case there is no double-well potential. There is only one minimum of the potential
U(R) in (41), i.e.Umin(R) = 0 atR = 0. The corresponding behaviour of the potential is
shown in case (a) of figures 10 and 13. No localized soliton solution exists in this case.

6. Discussion and conclusions

We now discuss in detail the properties of the solitons obtained above and compare our results
with those of previous models, explaining the advantages and the validity of this model.

(1) We first of all discuss the peculiarities of this model and its relation to proton transfer.
It is well known that, in ice, as well as in water, after the protons have been transferred from
one water molecule to another along the hydrogen bonded chains (as shown in figure 2), the
chain is restored to its original state by the so-called Bjerrum defect (as shown in figure 3).
This clearly shows that there are two distinct types of mechanisms of proton transfer in the
hydrogen-bonded systems. However, there is one open problem in previous models, including
the ADZ model and other generalizing models, which is how do the two types of defects
can combine automatically and alternate spontaneously in the transfer process? Thus, how
can we theoretically describe the mutually alternating transfer of the two types of defects?
It is these problems that may be solved by the present model. In this model we utilize a
unified idea to understand the proton transfer, i.e. whether the ionic defect or Bjerrum defect
is produced by the changes of the relative positions of the protons and heavy ions under the
action of an intrinsic nonlinear interaction. What distinguishes them is the interaction and the
way the changes of relative positions occur in this phenomenon. The ionic defect is mainly
produced by the double-well potential through the mechanism of jumping over the barriers in
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the manner of translation and crossover in the intrabonds, but the Bjerrum defect is caused by
the nonlinear coupling interaction through the mechanism of quasi-self-trapping in the manner
of the relative shift of positions of the two bodies in the interbonds as described in earlier
sections. In the transfer process the protons cross over the barriers in the intrabonds in the
form of kink solitons (which result in the ionic defect), and the shift over the barriers in the
interbonds in another soliton form (which results in the Bjerrum defect). The reason for this
change is that the coupling interaction between the protons and the heavy ions changes with
the change of the relative positions between them. When the protons cross the barriers in the
intrabonds, the coupling interaction is small due to their long distance from the heavy ions,
and so play a secondary part in determining the properties of the protons.

When the protons are near the heavy ions and cross over the barriers in the interbonds, the
coupling interaction becomes so great that their positions relative to those of the heavy ions
change considerably by means of the mechanism of quasi-self-trapping. In such a case the
coupling interaction determines the principal properties of the protons, the latter transforming
into another soliton form in the interbonds. However, the changes of the forms of the proton
transfer are not sudden, but asymptotic. This point can be explained from the changes of the
potential of the system with the change of coupling constants,(χ1 +χ2), in (43), (44), (47) and
(48). As a matter of fact, we see from (43) and (44) that the minima of the potential energy
become more and more negative with increasing(χ1 + χ2). When the latter become so great
that their effect is greater than that of the double-well potential in (3), then the minimum of
the potential energy of the system becomes just that of (47) and (48).

Therefore, the asymptotic changes of the potential energy of the system with the changes
of the coupling interaction result in the asymptotic changes of the manners of the proton
transfer or that of the proton soliton. Certainly, in this process the changes of the velocity
of the proton transfer in different regions can also result in some changes of the potential
energy of the system; thus it can also influence to some extent the form of the proton transfer
as mentioned in section 5. This is due to the Hamiltonian in (1), in which we consider not
only the double-well potential and the change of relative positions of neighbouring heavy
ions resulting from the vibration or displacement of the protons, but also the electromagnetic
interaction between the neighbouring protons and the resulting change in the relative positions
of neighbouring heavy ions. Thus the protons can transfer in the form of two different types
of solitons in the intrabonds and interbonds along the hydrogen-bonded chains through the
competition between these two types of nonlinear interaction. This is a main advantage of our
model. Also, it can give analytic solutions, which is a convenient property for analysing the
properties of the proton solitons and the two types of defects.

(2) It is easy to elucidate the combined and alternate changes of the two types of defects if
we consider the soliton solutions and their conditions, equations (15)–(31), and the properties
of the potential energy of the system described in section 5. We see that when the conditions
of (15) and (16) are satisfied, the defects occur, or—put differently—the excitation of the
protons and the deformation of the heavy ionic sublattice generated in such a case are together
transferred in the form of a kink–antikink soliton pair along the hydrogen-bonded chains. The
physical meaning of this soliton with the plus sign inR(x, t) in (18) is that the kink soliton
results in a localized reduction of the protonic density (i.e. expansion of the proton sublattice)
which amounts to creating a negatively charged carrier and an extended ionic defect moving
with a velocityv less than the speed of soundC0 andv1 in the two sublattices. The above
soliton solution corresponds to the OH− ionic defect to appear in the Bernal–Fowler picture.
The other soliton solution, with a minus sign inR(x, t) in (18), represents the compression
of the protonic sublattice and the increase of the localized proton density, which amounts
to creating a positively charged carrier and an extended ionic defect. Therefore the latter



904 X-F Pang and H J W M̈uller-Kirsten

corresponds to the H3O+ ionic defect. Thus the two types of solutions in (18)–(20) represent
the proton transfer in the form of ionic defects in the intrabonds accompanied by a localized
deformation of the heavy ionic sublattice. This point has already been discussed in detail in
section 5. However, the properties of the proton soliton in such a case are mainly determined
by the double-well potentialU(R) since there is still the same type of soliton in the system if
no coupling interaction is present. As a matter of fact whenχ1 = χ2 = 0, (12) becomes

Rtt − v2
1Rxx − ε1R +G1R

2R = 0 (51)

whereG1 = 4U0/mR
4
0 > 0, ε1 = ω2

1 − ω2
0 + (4U0/mR

2
0) > 0. Equation (51) has indeed

soliton solutions with the same shape and properties as the soliton of (18); the only difference
is that the amplitude and width of the soliton are slightly different. This clearly demonstrates
the above point of view. Hence here we may refer to the above type of soliton as a KINK I
soliton for convenience.

Contrary to the above KINK I soliton, the kink soliton arising with the conditions (21)
and (22) is of the form

R(x, t) = ±
(
ε′

G′

)1/2

tanh

[(
ε

2(v2 − v2
1)

)1/2

(x − vt)
]

(52)

where

G′ = −G = 4

mR4
0

(
(χ1 + χ2)

2mu2
0R

4
0

2MC2
0(1− s2)

− U0

)
> 0

ε′ = −ε = ω2
0 − ω2

1 +

(
2mu2

0(χ1 + χ2)
2R2

0

MC2
1(1− s2)

− 4U0

mR2
0

)
> 0. (53)

Although the shape of this kink soliton, equation (52), is the same as that of (18), the essential
features and properties of the soliton are vastly different from those of the soliton of (18). The
properties of the soliton in (52) are mainly determined by the nonlinear coupling interaction
between the protons and the heavy ions, because the kink soliton disappears ifχ1 = χ2 = 0.
Therefore the motion of the kink soliton cannot result in the above ionic defect, instead another
type of defect occurs in the interbonds. Owing to the different properties of the soliton, and
recalling again the corresponding properties of the potential energy of the system as discussed
in section 5, we can see that it is the Bjerrum defect produced by the so-called rotation of the
bond X–H arising from changes of the relative positions of the protons and the heavy ions in
which an O–O bond with two protons and positive effective charge (the D Bjerrum defect) and
one without proton and with negative effective charge (the L Bjerrum defect) occur. Therefore
we may refer to this type of soliton as a KINK II. The plus sign ofR(x, t) in (53) applies
to the L Bjerrum defect, which amounts to creation of a negative effective charge, and the
minus sign inR(x, t) in (53) applies in the case of the D Bjerrum defect which amounts to
creation of a positive effective charge. Thus there really are two types of different defects in
the hydrogen-bonded systems due to the localized fluctuations or displacements of the protons
in this model. This may be summarized as:

KINK I → I− ionic defect, KINK II→ L Bjerrum defect

and

anti-KINK I → I+ ionic defect, anti-KINK II→ D Bjerrum defect.

Therefore with this model we can simultaneously describe the two types of defects which
occur and their combined and internal transport in the hydrogen-bonded chains. This is a
peculiarity of this model. As a matter of fact, the local coupling interaction between the two
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sublattices introduced in the previous models, including the ADZ model and its generalizing
models, does not allow consideration of multiple-defect dynamics. All two-component models
can only support one pair of defects of each type, for example ionic defects. Pnevmatikos [15]
also studied the propagation of the ionic and Bjerrum defects by using a double-sine interaction,
but the mechanism of propagation is worth studying further; furthermore, his model does not
give the detailed structure of alternate transport of the two types of defects.

(3) We now study the properties of the solitons shown in (27) and (28), which have
not been obtained in previous models. It is well known that bounces are a kind of bell-
shaped but non-topological solitons. This result shows that the protons can transfer along
the hydrogen-bonded chains in the form of these bell-shaped solitary waves in the intrabonds
and the interbonds with a constant velocity, less than the speed of sound, in the heavy ionic
sublattice (v < C0). In accordance with the viewpoint described above in points (1) and
(2) of this section and the corresponding properties of the potential energy of the systems
discussed in section 5 we can also arrive at the following conclusions. The two types of
solitons determined by conditions (29) and (30) also describe the occurrence and motion
of the I− ionic defect with negative effective charge and theI+ ionic defect with positive
effective charge, respectively, when the protons cross the barrier from one molecule to another.
The properties of this soliton are mainly determined by the double-well potential due to the
conditions (29) and (30). However, the soliton given by (27) and (28) under the conditions
of (25) and (26) or (31) has different properties. This shows the occurrence and transport of
positive (D) and negative (L) Bjerrum defects generated by the rotations of the bonds, when
the protons transfer in the interbonds along the hydrogen-bonded chains. In such a case the
properties of the proton solitons are mainly determined by the nonlinear coupling interaction
due to the conditions (25), (26) and (31). Therefore, these solitons determined by (25)–(31)
can also describe the transport of the two types of defects which occur in hydrogen-bonded
systems.

(4) From above results and (15)–(31) we see that the velocities of these solitons excited
in the systems have a large domain includingv > (<)v1 and respectivelyv < (>)C1, apart
from v = C1 andv = v1. The extensive changes of velocity of the solitons are helpful to
make the proton transfer match the changes of the potential energy of the systems, and thus
make the protons easily cross over different barriers in the intrabonds and the interbonds as
described in section 5. This is also an advantage of our model. As a matter of fact, analytical
soliton solutions are supported in very small domains of velocity in the previous models,
including the ADZ model, which has an analytic solution for one single constant value. The
authors of [14] obtained numerical solutions with a perturbative method for a broader range of
velocities in the domainv1 < v < v0. The lower bound of this domain is generally different
from zero except for small coupling or a large ratioC0/v0. However, for physical reasons,
taking into account the inertia of the oxygen sublattice in ice, the breakdown of their two-
component solitary wave may be expected to occur at high velocities rather than at smaller
velocities.

The response of the soliton in this model to an external field will be examined elsewhere,
which is important for the determination of physical consequences of the soliton which can be
tested experimentally, such as conductivity.
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